next up previous contents index
Next: Rational Circles ( rat_circle Up: Basic Data Types for Previous: Rational Rays ( rat_ray   Contents   Index


Straight Rational Lines ( rat_line )

Definition

An instance l of the data type rat$\_$line is a directed straight line in the two-dimensional plane.

#include < LEDA/geo/rat_line.h >

Types

rat_line::coord_type the coordinate type (rational).

rat_line::point_type the point type (rat_point).

rat_line::float_type the corresponding floatin-point type (line).

Creation

rat_line l(const rat_point& p, const rat_point& q)
    introduces a variable l of type rat_line. l is initialized to the line passing through points p and q directed form p to q.
Precondition p $\not=$q.

rat_line l(const rat_segment& s) introduces a variable l of type rat_line. l is initialized to the line supporting segment s.
Precondition s is nontrivial.

rat_line l(const rat_point& p, const rat_vector& v)
    introduces a variable l of type rat_line. l is initialized to the line passing through points p and p + v.
Precondition v is a nonzero vector.

rat_line l(const rat_ray& r) introduces a variable l of type rat_line. l is initialized to the line supporting ray r.

rat_line l introduces a variable l of type rat_line.

rat_line l(const line& l1, int prec = rat_point::default_precision)
    introduces a variable l of type rat_line. l is initialized to the line obtained by approximating the two defining points of l1.

Operations

line l.to_float() returns a floating point approximation of l.

void l.normalize() simplifies the homogenous representation by calling point1().normalize() and point2().normlize().

rat_point l.point1() returns a point on l.

rat_point l.point2() returns a second point on l.

rat_segment l.seg() returns a segment on l.

bool l.is_vertical() decides whether l is vertical.

bool l.is_horizontal() decides whether l is horizontal.

rational l.slope() returns the slope of s.
Precondition l is not vertical.

rational l.x_proj(rational y) returns p.xcoord(), where p $\in$ line(l) with p.ycoord() = y.
Precondition l is not horizontal.

rational l.y_proj(rational x) returns p.ycoord(), where p $\in$ line(l) with p.xcoord() = x.
Precondition l is not vertical.

rational l.y_abs() returns the y-abscissa of line(l ), i.e., l.y_proj(0).
Precondition l is not vertical.

bool l.intersection(const rat_line& g, rat_point& inter)
    returns true if l and g intersect. In case of intersection a common point is returned in inter.

bool l.intersection(const rat_segment& s, rat_point& inter)
    returns true if l and s intersect. In case of intersection a common point is returned in inter.

bool l.intersection(const rat_segment& s)
    returns true, if l and s intersect, false otherwise.

rat_line l.translate(const rational& dx, const rational& dy)
    returns l translated by vector (dx, dy).

rat_line l.translate(integer dx, integer dy, integer dw)
    returns l translated by vector (dx/dw, dy/dw).

rat_line l.translate(const rat_vector& v)
    returns l translated by vector v.
Precondition v.dim() = 2.

rat_line l + const rat_vector& v returns l translated by vector v.

rat_line l - const rat_vector& v returns l translated by vector - v.

rat_line l.rotate90(const rat_point& q, int i=1)
    returns l rotated about q by an angle of i x 90 degrees. If i > 0 the rotation is counter-clockwise otherwise it is clockwise.

rat_line l.reflect(const rat_point& p, const rat_point& q)
    returns l reflected across the straight line passing through p and q.

rat_line l.reflect(const rat_point& p)
    returns l reflected across point p.

rat_line l.reverse() returns l reversed.

rational l.sqr_dist(const rat_point& q)
    returns the square of the distance between l and q.

rat_segment l.perpendicular(const rat_point& p)
    returns the segment perpendicular to l with source p and target on l.

rat_point l.dual() returns the point dual to l.
Precondition l is not vertical.

int l.orientation(const rat_point& p)
    computes orientation(a, b, p), where a $\not=$b and a and b appear in this order on line l.

int l.side_of(const rat_point& p)
    computes orientation(a, b, p), where a $\not=$b and a and b appear in this order on line l.

bool l.contains(const rat_point& p)
    returns true if p lies on l.

bool l.clip(rat_point p, rat_point q, rat_segment& s)
    clips l at the rectangle R defined by p and q. Returns true if the intersection of R and l is non-empty and returns false otherwise. If the intersection is non-empty the intersection is assigned to s; It is guaranteed that the source node of s is no larger than its target node.

bool l == const rat_line& g returns true if the l and g are equal as oriented lines.

bool equal_as_sets(const rat_line& l, const rat_line& g)
    returns true if the l and g are equal as unoriented lines.

Non-Member Functions

int orientation(const rat_line& l, const rat_point& p)
    computes orientation(a, b, p), where a $\not=$b and a and b appear in this order on line l.

int cmp_slopes(const rat_line& l1, const rat_line& l2)
    returns compare(slope(l1), slope(l2)).

rat_line p_bisector(const rat_point& p, const rat_point& q)
    returns the perpendicular bisector of p and q. The bisector has p on its left.
Precondition p $\not=$q.


next up previous contents index
Next: Rational Circles ( rat_circle Up: Basic Data Types for Previous: Rational Rays ( rat_ray   Contents   Index