Definition
An instance s of the data type
d3
segment is a directed straight line
segment in three-dimensional space, i.e., a straight line segment [p, q]
connecting two points
p, q
R3. p is called the source or
start point and q is called the target or end point of s. The
length of s is the Euclidean distance between p and q. A segment is called
trivial if its source is equal to its target. If s is not trivial, we use
line(s) to denote the straight line containing s.
#include < LEDA/geo/d3_segment.h >
Creation
| d3_segment | s(const d3_point& p1, const d3_point& p2) | |
| introduces a variable s of type d3_segment. s is initialized to the segment from p1 to p2. | ||
| d3_segment | s | introduces a variable s of type d3_segment. s is initialized to the segment from (0,0,0) to (1,0,0). |
Operations
| bool | s.contains(const d3_point& p) | |
| decides whether s contains p. | ||
| d3_point | s.source() | returns the source point of segment s. |
| d3_point | s.target() | returns the target point of segment s. |
| double | s.xcoord1() | returns the x-coordinate of s.source(). |
| double | s.xcoord2() | returns the x-coordinate of s.target(). |
| double | s.ycoord1() | returns the y-coordinate of s.source(). |
| double | s.ycoord2() | returns the y-coordinate of s.target(). |
| double | s.zcoord1() | returns the z-coordinate of s.source(). |
| double | s.zcoord2() | returns the z-coordinate of s.target(). |
| double | s.dx() | returns xcoord2()-xcoord1(). |
| double | s.dy() | returns ycoord2()-ycoord1(). |
| double | s.dz() | returns zcoord2()-zcoord1(). |
| segment | s.project_xy() | returns the projection into the xy plane. |
| segment | s.project_xz() | returns the projection into the xz plane. |
| segment | s.project_yz() | returns the projection into the yz plane. |
| d3_segment | s.project(const d3_point& p, const d3_point& q, const d3_point& v) | |
| returns s projected into the plane through (p,q,v). | ||
| d3_segment | s.reflect(const d3_point& p, const d3_point& q, const d3_point& v) | |
| returns s reflected across the plane through (p,q,v). | ||
| d3_segment | s.reflect(const d3_point& p) | |
| returns s reflected across point p. | ||
| d3_segment | s.reverse() | returns s reversed. |
| vector | s.to_vector() | returns s.target()-s.source(). |
| bool | s.intersection(const d3_segment& t) | |
| decides, whether s and t intersect in a single point. | ||
| bool | s.intersection(const d3_segment& t, d3_point& p) | |
| decides, whether s and t intersect in a single point. If they intersect in a single point, the point is assigned to p and the result is true, otherwise the result is false | ||
| bool | s.intersection_of_lines(const d3_segment& t, d3_point& p) | |
| If line(s) and line(t) intersect in a single point this point is assigned to p and the result is true, otherwise the result is false. | ||
| bool | s.is_trivial() | returns true if s is trivial. |
| double | s.sqr_length() | returns the square of the length of s. |
| double | s.length() | returns the length of s. |
| d3_segment | s.translate(const vector& v) | |
| returns s translated by vector v. Precond.: v.dim()=3. |
||
| d3_segment | s.translate(double dx, double dy, double dz) | |
| returns s translated by vector (dx,dy,dz). | ||
| d3_segment | s + const vector& v | returns s translated by vector v. |
| d3_segment | s - const vector& v | returns s translated by vector - v. |